A family-based approach to identify genetic modifiers of the age at onset in Frontotemporal Lobar Dementia (FTLD)

Mathieu Barbier

ICM - Brain and Spine Institute CHU Pitié-Salpêtrière, 75013 Paris

mathieu.barbier@icm-institute.org

Réunion nationale du centre de référence et des centres de compétences DEMENCES RARES OU PRECOCES – 29 juin 2018

Frontotemporal Lobar Dementia (FTLD) & Genetics

FTLD

- 4-10 cases/100,000 inhabitants
- Second most common pre-senile dementia
- Mean age at onset ~ 60 y
- Progressive neuronal loss
- Progressive degeneration of frontal and temporal cortices

- Behavior disorders: apathy, disinhibition, stereotyped behaviors, loss of empathy...
- Language disorders
- Amyotrophic Lateral Sclerosis (ALS) in 15%

Genetic landscape of FTLD

- 40% of cases with a familial history
- Heterogeneity (>20 genes, AD++ inheritance)
- 3 major genes:
 - MAPTGRNGRN
 - C9orf72 => Expansion, FTLD and/or ALS
- Known genes explain 80% of familial FTLD.
- The phenotypical variability remains largely unexplained.

Variability of the Age at Onset (AO) in familial FTLD - State of the art -

- Not explained by causal mutations.
- Variability of AO impairs patients 'care (genetic counseling, set-up of therapeutic trials).
- Previous searches for genetic biomarkers influencing AO (mainly performed with GRN patients):
 - Used approaches with unrelated individuals (GWAS-like).
 - TMEM106B, +/- replicated.
 - Used candidate genes approaches (especially for C9orf72, only TMEM106B was tested).

Variability of the Age at Onset (AO) in familial FTLD - State of the art -

- Not explained by causal mutations.
- Variability of AO impairs patients 'care (genetic counseling, set-up of therapeutic trials).
- Previous searches for genetic biomarkers influencing AO (mainly performed with GRN patients):
 - Used approaches with unrelated individuals (GWAS-like).
 - TMEM106B, +/- replicated.
 - Used candidate genes approaches (especially for C9orf72, only TMEM106B was tested).
- We initiated a family-based approach without a priori to highlight genetic modifiers of AO:
 - > need less individuals, less statistical corrections, adapted to rare diseases.
 - > But need specific genetic statistical knowledges, and adapted data.

Variability of the Age at Onset (AO) in familial FTLD In search of Genetic markers

Collection of 504 carriers with phenotypic and pedigree data from 133 *C9orf72* and 90 *GRN* familial FTLD thanks to the French Reference Centre for Rare or Early Dementia

Variability of the Age at Onset (AO) in familial FTLD In search of Genetic markers

Collection of 504 carriers with phenotypic and pedigree data from 133 *C9orf72* and 90 *GRN* familial FTLD thanks to the French Reference Centre for Rare or Early Dementia

Do genetic factors (broad sense) influence AO ?

Heritability estimates using Variance component methods

Intra-familial correlations of the AO

Variability of the Age at Onset (AO) in familial FTLD In search of Genetic markers

Collection of 504 carriers with phenotypic and pedigree data from 133 *C9orf72* and 90 *GRN* familial FTLD thanks to the French Reference Centre for Rare or Early Dementia

Selection of 504 probands and affected relatives from 223 families (133 *C9orf72* and 90 *GRN* families)

Heritability estimates

C9orf72:

0.44 \pm **0.13**; p = **1.10**^{e-4} (AO) **0.62** \pm **0.17**; p = **8.10**^{e-5} (AO-FTD)

GRN:

0.26 ± 0.28; NS

	Parent-offspring		Sibling		Avuncular		Cousin	
	r	p Value	r	p Value	r	p Value	r	p Value
C90RF72								
AAO	0.12 (111)	0.36	0.46 (145)	<1.10e-4	0.20 (59)	0.39	0.28 (33)	0.24
AAO-FTD	0.33 (58)	0.06	0.66 (68)	<1.10e-4	0.51 (20)	0.12	0.44 (12)	0.19
GRN								
AAO	0.13 (58)	0.21	0.24 (42)	0.13	-0.58 (8)	0.11	-0.48 (4)	0.31

Selection of 504 probands and affected relatives from 223 families (133 *C9orf72* and 90 *GRN* families)

Heritability estimates

C9orf72:

 0.44 ± 0.13 ; p = 1.10^{e-4} (AO)

 0.62 ± 0.17 ; p = 8.10^{e-5} (AO-FTD)

GRN:

 0.26 ± 0.28 ; NS

	C9 AAO		C9 AAO-FTD		
Pair subtypes	r	p Value	r	p Value	
Father-son	0.03 (31)	0.89	-0.15 (19)	0.65	
Mother-son	0.51 (33)	0.008	0.57 (17)	0.03	
Father-daughter	0.06 (17)	0.89	0.36 (7)	0.63	
Mother-daughter	-0.12 (30)	0.58	0.46 (15)	0.09	

Selection of 504 probands and affected relatives from 223 families (133 *C9orf72* and 90 *GRN* families)

Heritability estimates

C9orf72:

 0.44 ± 0.13 ; p = 1.10^{e-4} (AO)

 0.62 ± 0.17 ; p = 8.10^{e-5} (AO-FTD)

GRN:

 0.26 ± 0.28 ; NS

	C9 AAO		C9 AAO-FTD		
Pair subtypes	r	p Value	r	p Value	
Father-son	0.03 (31)	0.89	-0.15 (19)	0.65	
Mother-son	0.51 (33)	0.008	0.57 (17)	0.03	
Father-daughter	0.06 (17)	0.89	0.36 (7)	0.63	
Mother-daughter	-0.12 (30)	0.58	0.46 (15)	0.09	
Brother-brother	0.58 (37)	0.0003	0.71 (15)	<1.10e-4	
Brother-sister	0.56 (70)	<1.10e-4	0.75 (33)	<1.10e-4	
Sister-sister	0.21 (38)	0.22	0.46 (20)	0.04	

Selection of 504 probands and affected relatives from 223 families (133 *C9orf72* and 90 *GRN* families)

Heritability estimates

C9orf72:

 0.44 ± 0.13 ; p = 1.10^{e-4} (AO)

 0.62 ± 0.17 ; p = 8.10^{e-5} (AO-FTD)

GRN:

0.26 ± 0.28; NS

X-linked modifier?

	C9 AAO		C9 AAO-FTD		
Pair subtypes	r	p Value	r	p Value	
Father-son	0.03 (31)	0.89	-0.15 (19)	0.65	
Mother-son	0.51 (33)	0.008	0.57 (17)	0.03	
Father-daughter	0.06 (17)	0.89	0.36 (7)	0.63	
Mother-daughter	-0.12 (30)	0.58	0.46 (15)	0.09	
Brother-brother	0.58 (37)	0.0003	0.71 (15)	<1.10e-4	
Brother-sister	0.56 (70)	<1.10e-4	0.75 (33)	<1.10e-4	
Sister-sister	0.21 (38)	0.22	0.46 (20)	0.04	

Selection of 504 probands and affected relatives from 223 families (133 *C9orf72* and 90 *GRN* families)

- This descriptive approach led to show:
 - ➤ High and significant heritability of AO in *C9orf72* families (up to 62%).
 - Intra-familial correlations tend to correlate with kinship coefficient.
 - Intra-familial correlations in subtypes (father-son, mother-son etc.) suggested that at least one X-linked modifier may influence AO.

Variability of the Age at Onset (AO) in familial FTLD In search of Genetic markers

Collection of 504 probands with phenotypic and pedigree data from 133 *C9orf72* and 90 *GRN* familial FTLD thanks to the French Reference Centre for Rare or Early Dementia

Linkage using concordant / discordant pairs of relatives

- 34 families with C9orf72 pathogenic expansion.
- 23 concordant pairs of relatives (difference of AO <2y).
- 35 discordant pairs of relatives (difference of AO >10y).
- 2 loci with suggestive linkage:
 - Chr. X q27.3 (max LOD=2.1)

- ➤ The 2 *loci* identified include 2 genes coding for proteins interacting *in vivo*.
 - ➤ No suggestive LOD scores in *GRN* families.

Association using concordant / discordant pairs of relatives

- 34 families with C9orf72 pathogenic expansion.
- 23 concordant pairs of relatives (difference of AO <2y).
- 35 discordant pairs of relatives (difference of AO >10y).

Autosome:

- 2 *loci* with suggestive scores (p-value < 10^{e-5}).
- 2 variations with a located in CTNNA2/LRRTM1.
- Excitatory synapse, associated with SCZ and psychosis.

X-chromosome:

• 1 variation with a p-value < 10^{e-5} located upstream of *SLITRK2*.

A family-based approach in familial-FTLD - Conclusion

Usefulness of using clinical data, information, and biological samples :

- High heritability of AO in familial FTLD (higher in *C9orf72* than in *GRN* families)
- Pattern of intra-familial correlation of the AO which evokes X-linked modifiers in C9orf72 families
- Linkage & association analyses highlighted the synapse and synaptic adhesion proteins
 - Do variable synaptic dysfunctions influence the AO?

A family-based approach in familial-FTLD - Conclusion

Usefulness of using clinical data, information, and biological samples :

- High heritability of AO in familial FTLD (higher in *C9orf72* than in *GRN* families)
- Pattern of intra-familial correlation of the AO which evokes X-linked modifiers in C9orf72 families
- Linkage & association analyses highlighted the synapse and synaptic adhesion proteins
 - Do variable synaptic dysfunctions influence the AO?
- Next steps:
 - > Increase number of families / pairs, improve our familial analyses:
 - > We are getting data from consortium (IFGC, R. Ferrari, UCL, London).
 - > Despite the identification of causal genes, we still need patients' samples who fit our criteria to enrich our population (GRN, C9orf72, concordant/discordant sib-pairs, extreme AO).
 - Cross with results from whole exome sequencing of unrelated cases with extreme AO.
 - GRN patients with AO<55y or AO>68y.
 - > C9orf72 patients with AO<50y or AO>67y.
 - We are planning functional analyses.

Thanks to...

UMR S 1127, ICM, Paris

Head: Alexis Brice

Isabelle Le Ber (Project coordinator, isabelle.leber@upmc.fr) Mathieu Barbier (mathieu.barbier@icm-institute.org)

Daisy Rinaldi

Agnès Camuzat

Plate-forme iCONICS & iGenSeq, ICM, Paris

Plate-forme P3S, UMS-2 US29 Omique, Paris

UF de Neurogénétique Moléculaire et Cellulaire, Paris Eric Le Guern, Fabienne Clot, Cécile Cazeneuve

Carlo Besta Neurological Institute, Milan Giacomina Rossi, Paola Caroppo

Erasmus University Medical Center, Rotterdam John van Swieten

IFGConsortium (R. Ferrari, UCL, London)

INSERM U1078, Brest

Emmanuelle Génin

UMR216—MERIT, IRD, Paris

Audrey Sabbagh

ICM / IM2A, Paris

Marion Huot

French clinical & genetic research network on FTD/FTD-ALS

- Paris
- Marseille
- Montpellier
- Poitiers
- Rennes/St Brieuc
- Rouen
- Strasbourg/Colmar
- Toulouse
- Guadeloupe

- Dijon - Lille

- Amiens

- Angers

- Limoges
- Lyon / St Etienne / Grenoble
- Nantes

C9orf72 G₄C₂ repeats number, AO, and age at collection in blood

Figure 2. Correlations between C9orf72 G₄C₂ repeat number and age at collection in patients (**a**) and in presymptomatic carriers (**b**). A regression line and Spearman's r are indicated. Asterisks represent p-value significance (***p < 0.0001).